Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. High-resolution urban climate modeling has faced substantial challenges due to the absence of a globally consistent, spatially continuous, and accurate dataset to represent the spatial heterogeneity of urban surfaces and their biophysical properties. This deficiency has long obstructed the development of urban-resolving Earth system models (ESMs) and ultra-high-resolution urban climate modeling, over large domains. Here, we present U-Surf, a first-of-its-kind 1 km resolution present-day (circa 2020) global continuous urban surface parameter dataset. Using the urban canopy model (UCM) in the Community Earth System Model as a base model for satisfying dataset requirements, U-Surf leverages the latest advances in remote sensing, machine learning, and cloud computing to provide the most relevant urban surface biophysical parameters, including radiative, morphological, and thermal properties, for UCMs at the facet and canopy level. Generated using a systematically unified workflow, U-Surf ensures internal consistency among key parameters, making it the first globally coherent urban canopy surface dataset. U-Surf significantly improves the representation of the urban land heterogeneity both within and across cities globally; provides essential, high-fidelity surface biophysical constraints to urban-resolving ESMs; enables detailed city-to-city comparisons across the globe; and supports next-generation kilometer-resolution Earth system modeling across scales. U-Surf parameters can be easily converted or adapted to various types of UCMs, such as those embedded in weather and regional climate models, as well as air quality models. The fundamental urban surface constraints provided by U-Surf can also be used as features for machine learning models and can have other broad-scale applications for socioeconomic, public health, and urban planning contexts. We expect U-Surf to advance the research frontier of urban system science, climate-sensitive urban design, and coupled human–Earth systems in the future. The dataset is publicly available at https://doi.org/10.5281/zenodo.11247598 (Cheng et al., 2024).more » « less
-
Abstract Urban areas are increasingly vulnerable to the impacts of climate change, necessitating accurate simulations of urban climates in Earth system models (ESMs) in support of large‐scale urban climate adaptation efforts. ESMs underrepresent urban areas due to their small spatial extent and the lack of detailed urban landscape data. To enhance the accuracy of urban representation, this study integrated the local climate zones (LCZs) scheme within the Community Earth System Model (CESM) to better represent urban heterogeneity. We adopted a modular approach to incorporate the 10 built LCZ classes into CESM as a new option in addition to the default urban three‐class scheme (i.e., tall building district, high density, and medium density). CESM simulations using the LCZ‐based urban characteristics were validated globally at 20 flux tower sites, showing site‐averaged improvement in modeling upward longwave radiation () and anthropogenic heat flux (), but increased uncertainties in modeling sensible heat flux (). The root‐mean‐square error between the observed and simulated using the LCZ decreased by 4% compared to using the default. Model sensitivity experiments revealed that and had comparable sensitivity to LCZ urban morphological and thermal parameter subsets. This study assessed and demonstrated the implementation as the starting point for future work on better resolving urban areas in Earth system modeling.more » « lessFree, publicly-accessible full text available November 1, 2026
-
The scientific field of urban climatology has long investigated the two-way interactions between cities and their overlying atmosphere through in-situ observations and climate simulations at various scales. Novel research directions now emerge through recent advancements in sensing and communication technologies, algorithms, and data sources. Coupled with rapid growth in computing power, those advancements augment traditional urban climate methods and provide unprecedented insights into urban atmospheric states and dynamics. The emerging field introduced and discussed here as Urban Climate Informatics (UCI) takes on a multidisciplinary approach to urban climate analyses by synthesizing two established domains: urban climate and climate informatics. UCI is a rapidly evolving field that takes advantage of four technological trends to answer contemporary climate challenges in cities: advances in sensors, improved digital infrastructure (e.g., cloud computing), novel data sources (e.g., crowdsourced or big data), and leading-edge analytical algorithms and platforms (e.g., machine learning, deep learning). This paper outlines the history and development of UCI, reviews recent technological and methodological advances, and highlights various applications that benefit from novel UCI methods and datasets.more » « less
-
Abstract Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones.more » « less
An official website of the United States government
